The best time to prune trees

In the low desert, tree pruning can be done almost year round, but here are the suggested best times to trim:

  • Deciduous trees – winter dormancy (December through February)
  • Citrus – after February to avoid frost damage
  • Conifers – winter dormancy
  • Natives – summer
    • Mesquites: Spring or early summer to prevent damage from monsoon storms
    • Palo Verdes: Avoid summer pruning since they are sun sensitive

Don’t forget to sanitize your pruning equipment before use, and in between pruning different trees to prevent virus, vascular fungus and bacteria infections. Don’t prune at oozing cankers. You can use:

  • 70% isopropyl alcohol
  • Listerine
  • Lysol
  • Pine-Sol

For more information on pruning:

Laser Engraving: Photos

Methods for Wood, Canvas, Mirror, Slate and Tile

Precise focus of the laser is critical. Every laser is different – practice makes perfect.

Wood

Wood is one of the more popular options for engraving because it’s easy to find and relatively low cost. However, engraving wood can be a frustrating endeavor if you aren’t aware of some key considerations.

Not all types of wood engrave well, and even the same wood may not engrave the same due to differences in moisture or resin content. So let’s look at some considerations when selecting wood.

Resin Content

Higher resin content is found in softer woods, which are typically lighter colored, and the more resin, the darker the burn (engraved markings). Resin levels are affected by where and when the wood was cut. Alder, Maple and Cherry are premium options.

Streaking

Lines naturally present in some woods caused by mineral content. The streaks are visible after engraving and reduce the impact of the final result.

Shade

Lighter wood provides a stronger contrast to the engrave (burn) lines, allowing your work to stand out.

Good examples of wood for engraving include:

  • Alder (great for photos)
  • Cherry (great for photos)
  • Maple (great for photos)
  • Basswood
  • Plywood
  • MDF
  • HDF
  • Balsa

On Maple plywood, general settings for 2W – 5W laser

  • 1900 mm/min
  • 80% power
  • Jarvis dithering

Photo and engraving by Jeff Vortisch, Photo Laser Engraving FB group

On Alder plywood

Tip: Mask a high contrast portion of a photo and run on different settings to find what works best for your laser.


Norton White Tile Method

Two Trees 2.2w Diode Laser

  • Nero Dithering
  • 318 DPI (line interval .08)
  • 1200 mm/min
  • 80% Power

Photo and engraving by Edward Kraushar, Photo Laser Engraving FB group

Ortur LM 3 10w laser

  • 3700 mm/min
  • 90% power
  • Jarvis dithering (Lightburn)

Photo and engraving by Thorsten Fichtel, Photo Laser Engraving FB group

Snapmaker A350 1.6w laser

  • Rustoleum PaintersTouch 2X Smokey Beige paint
  • 700 mm/min
  • 318 dpi
  • 60% power
  • 90 degree scan angle, Stucki dither

Photo and engraving by Alan Fox, Photo Laser Engraving FB group


Slate

10w diode laser

  • Clear coat first
  • 318 dpi
  • 10000 mm/min
  • 50% power
  • Denoise 30, Autosharpen 6 (Imag-r)

Photo and engraving by Philip Baird, Photo Laser Engraving FB group

10w diode laser

  • 300 dpi
  • 3000 mm/min
  • 60% power

Photo and engraving by Richard Jones, Photo Laser Engraving FB group

OLM2 LU2-4 5.5w laser

  • 318 DPI
  • Kasia processing
  • 3000 mm/min
  • 90% power
  • Sprayed slate with black paint first

Photo and engraving by Andrea Dawson, Den of Lasers FB group

Ortur LM2, 20w diode laser

  • 2000 mm/min
  • 75% power

Photo and engraving by LA Hobby Guy (also see, Creating a Laserbed Template)

Laser Engraving: NEJE 3 Max

The NEJE 3 Max A40640 Laser Engraver

Looking to make your own garden signs? Plant tags? Coasters? Hobby-level laser engraving machines make this all possible, and more.

Like many hobbies, however, the actual cost of getting started and realizing your creations can be significantly higher than the cost of the engraver. In this thread I’ll be covering the journey of assembling and outfitting the NEJE 3 Max laser engraver and then completing some small projects.

The NEJE 3 Max provides one of the largest engraving areas of any hobby laser, 460 x 810mm (18 x 32″) and uses a laser diode like the A40640 dual beam 10 watt module for both cutting and engraving.

Although this is a very well appointed engraver, like other diode based machines you will need to purchase accessories to make it practical and safe to use.

I purchased mine from Amazon for about $600. You can also purchase directly from NEJE.

There are other widely used diode laser engraver manufacturers at various price points, here are some examples (list prices at time of publication):

  • Atomstack: A5 ($360), S10 Pro ($570), A10 Pro ($570), S20 Pro & A20 Pro ($900-$1100)
  • Comgrow: Z1 ($349)
  • NEJE: 3 Max ($600), 3 Pro ($359)
  • Ortur: Aufero Laser 1 ($330), Aufero Laser 2 ($400), Laser Master 2 ($600), Laser Master 3 ($750)
  • Sculpfin: S9 ($280), S10 ($490), S30 ($330), S30 Pro ($540)
  • Twotrees: TS2, TS3, TTS-55
  • Xtool (Newer to the engraver scene, but they have spent a lot on marketing, giving them a strong launch): D1 Pro ($700-$4200)

Note: Some manufacturers advertise a power (large numbers like 40W or 80W) that’s different than the optical output power (typically 5W-10W) of the laser. Optical power is what matters if you’re doing comparisons.

If you are interested in higher power and faster cutting capabilities, consider a CO2 engraver.

Caution: Laser engraving requires careful consideration for the safety of the user and visitors. Be prepared for a fire, protect your eyes from the harmful UV radiation and protect yourself from potentially toxic fumes. More info here.


UNDER CONSTRUCTION…

Unpacking

What’s in the box:

A photo of what's included in the box for the NEJE 3 Max laser engraver
  • 1 – Motherboard side rail
  • 2 – Stepper motor right side rail
  • 3 – Top and Bottom frame rails
  • 4 – Drag chain support
  • 5 – Laser Gantry X-axis frame
  • 6 – Drag chaines
  • 7 – Air Assist option (included as part of Amazon kit)
  • 8 – M7 Relay with control wire
  • 9 – USB Cable
  • 10 – A406040 Laser Module, 10W dual diode
  • 11 – Power Supply
  • 12 – Belt Tensioner option (included as part of Amazon kit)
  • 13 – Assembly brackets and hardware
  • 14 – Sample engraving materials
  • 15 – Safety goggles (not officially certified – professional laser glasses like these are strongly recommended to protect your eyes from UV radiation)
  • 16 – TBD
  • 17 – Red Door Button (this is included for use with an enclosure as a kill switch)

Items Not Included

  • Waste Board – this is a board that secures the laser frame; in this case I’m using a 2′ x 4′ x 3/4″ piece of sanded plywood. This board is also necessary to ensure final square of the frame. About $30.
  • Air Assist Pump – A strong air flow is required for the air assist feature to work. Air assist is used primarily during cutting operations, and a minimum of 70L/min is recommended. This is the pump that I’ve purchased for the job. About $50.
  • Fume Extractor – engraving and cutting produces not only smoke, but also toxic chemicals. I’ll be operating the engraver in the garage, so I can open doors to help, but I’m still going to use this extractor to filter smoke and fumes. About $120. Note: this Comgrow extractor is probably only sufficient if you have the NEJE in an enclosure – my first tests of the engraver proved just how much smoke is generated during cuts and rasters, and the Comgrow did not even make a dent in the smoke (no enclosure). I’m considering a Vivosun grow tent with vent fan as a future option.
  • Laser Glasses, as mentioned above. About $35.
  • Enclosure – at this time NEJE does not offer an enclosure, so if you want one to block the laser light and reduce fumes, you’ll have to make one or purchase from a third party.
  • Honeycomb Metal Mat – provides heat dissipation and air flow during cutting operations, I purchased this one for about $160.
  • Fire extinguisher and fire blanket. About $50

As you can see, there’s more to getting started than just purchasing the diode laser engraver. Note that CO2 machines cost more, but also tend to include more of the listed options as standard.

NEJE gets kudos for providing good build quality and:

  • An air assist valve, control and associated laser module nozzle
  • Drag chains for wire management
  • A precision Z-axis adjustable mount for the laser module
  • Belt tensioners

And some cons (all of these are addressed in this blog):

  • Instructions (what instructions?)
  • Squaring the rail assembly is critical, but poorly documented
  • The Z-axis (H2O) slider is not designed for the A40640 module
  • NEJE doesn’t offer an enclosure, and after doing a trial engraving I can say you need to have an enclosure to contain the smoke and fumes (or an extremely good exhaust system, or both)
  • You need a very good exhaust system, even with an enclosure, and because of the size of the 3 Max the enclosure and exhaust need to be top notch
  • NEJE provides an air assist solenoid and laser module fitting, but no pump. The provided accessories require a very strong air pressure, so you need a good pump or compressor. Also, the laser module fitting is finicky and makes it difficult to access the laser lens for cleaning.

Assembly

Side and Top Rails, Metal Drag Chain Support, and X-axis Laser Gantry

Layout the rails, placing the side rail with motherboard on the left.

  • Secure the side and top rail corners using the M5-10 socket bolts.

Check to make sure that the frame is square. This is a large frame, and even a small error can be significant, so make sure the frame is square after each frame assembly step.

Attach metal drag chain support (1 of 3)

  • Use an L-bracket to secure the right side to the Motor Y-R assembly with two M3-10 bolts & nuts.

Attach metal drag chain support (2 of 3)

  • On the left side, remove the two black zip ties that secure the cables (the holes will be used to secure a bracket).
  • Secure an L-bracket and the drag-chain bracket using two M3-10 bolts and nuts.

Attach metal drag chain support (3 of 3)

  • Secure the drag-chain support bar with the lower base facing the back of the machine with M3-10 flat head screws & nuts
  • Before tightening all of the screws, pull the stepper motors to the front (bottom) rail and confirm that the assembly is parallel to the rail (both stepper motors should be touching the rail).
  • Do a final tighten on all screws and bolts.

Status pic – here’s how the assembly appears at this point:


Remove the connector from the Laser module stepper motor and the two zip ties holding the cable in place.

Route the Laser module cable through the hole the left side drag chain bracket, then through a drag chain.

Fish the air assist hose through the drag chain (not shown).

Attach the drag chain at the middle of the support using two M3-10 bolts and nuts.

Attach the Laser Gantry X-axis frame with two M5-10 bolts.

Insert the Motor Y-R connectors at the stepper motor and at the motherboard.

Attach the second angle bracket to the laser module stepper motor with two M3-10 bolts and nuts.

Attach the other end of the drag chain to the angle bracket using two M3-10 bolts and nuts.

Feed the red laser module wire and air tubing through the angle bracket hole.

Attach the laser stepper motor connector.


Status pic – here is what the machine looks like at this point of assembly.


Attach the air assist solenoid to the angle bracket using the provided screws.


Mounting to the Waste Board and Final Square

The NEJE 3 Max has a very large working area, and even though the extruded frame is rigid, chances are at this point it is slightly out of square. And for an engraver that measures accuracy in fractions of a millimeter, a rigid and square frame is critical.

Here are the steps that I used to mount and square the frame:

Position the frame where you’d like it on the waste board. Since I’m using a high quality piece of plywood with factory cut edges, I used the front edge of the board as a reference, and spaced the left and right front corners of the frame equally away from the edge.

Attach the front left corner, then the front right corner using the supplied brackets and screws.

Pull the laser gantry all the way to the front of the frame and let go – both the left and right stepper motors should touch.

Make adjustments as needed by placing left or right pressure at the back of the frame until the laser gantry is parallel with the front of the frame.

Now secure the back two corners of the frame to the waste board, double-checking square as you go.


Fish the USB, power, red door switch and relay control wires through the second drag chain. I ran the USB through first, then taped the ends of the remaining three wires together for the final fishing.

Mount one end of the drag chain to the solenoid bracket. This is an area that needs improvement by NEJE – the mounting holes are not spaced properly for the drag chain, and the screws that affix the solenoid prevent the drag chain from mounting flat. Patience is a virtue 🙂

Screw the other end of the drag chain to the waste board.

Connect the red button to the Door input, the relay control wire to M7 and the air assist solenoid to M8.

Plug in the USB and power cables.

Connect the red cable to the laser module, then attach the module to the Z-axis adjustment bracket.

We’ll discuss the test patterns shown in this photo later. First the laser focal length has to be determined…

But before we do any cutting or engraving, let’s look at a suitable enclosure and exhaust system. All it took was one run of the laser and it was clear that smoke and fumes would have to be dealt with.

This is a 4’x4′ Visosun grow tent with AC Infinity 6″ exhaust fan and carbon filter. 25′ of flexible 6″ ducting allows me to vent out a door.

This setup takes up 16 sq feet of floor space, but the tent can be moved when not in use and provides a mini-workshop. Down the road I plan to add a Lightburn camera above the work surface and needless to say, there is plenty of room 🙂

The Ramp Test

The A40640 laser module has variable focus, which, for the novice, is a bit of a detriment, because you need to select a focus for the lens, and then an optimal distance to the work piece.

Based on a video from the LA Hobby Guy, I elected to screw the lens all the way in; NEJE mentions screwing out the lens a few turns, so you’ll have to pick a point to start. Watch Rich’s video linked above to learn the details of the ramp test.

In the previous image you can almost see the yellow lines that highlight how the work piece is ramped on the honeycomb surface 😉

Since the laser module travels at a constant distance from the table, the ramp reproduces a range of module to work piece gaps. Somewhere along this continuum you can find a sweet spot where, even at very low power the laser is focused enough to leave a mark on the wood.

For my 3 Max, 22 mm from the base of the laser module heat sink to the work piece proved to be best.

To further test the focus I created a jig to establish gaps of 24mm – 19mm from the laser heat sink to the work piece.

21mm provided the best performance, but 22mm and 23mm were very close (see next figure).

For cuts you should focus the laser at a point half way into the thickness of your work piece. In this case the wood measures 3.2mm, so we could say the focal point of the laser is 22.6mm from the laser heat sink.

All of these cuts were performed at 360mm/min and 2 passes; ignore the engraved text 🙂

Looking at the back of the wood, 22mm and 23mm were very close to the winning gap of 21mm.

Note: These cuts were made without air assist (still working on a practical installation of the air assist feature.)

Coming Next:

  • Adjusting the laser module focus ring
  • Mounting the laser
  • Adjusting and verifying focus
  • Running a universal test card to confirm performance

Supporting Videos

Pollinator Garden Plants: Catclaw Acacia

Senegalia greggii (formerly Acacia greggii) is native to the southwestern united states and northern Mexico at elevations below 4500′. It’s a large thorny shrub or small tree growing to 20′ tall. Flowers are fragrant. Full to part sun, low water and hardy to 0 degrees F.

Flowering Season: J F M A M J J A S O N D

Sonoran Desert Native, great nectar plant, attracts native birds and super larval host plant:

  • Mexican Yellow (Eurema mexicana)
  • Mimosa Yellow (Eurema nise)
  • Reakirt’s Blue (Echinargus isola)
  • Marine Blue (Leptotes marina)
  • Hubbard’s Small Silkmoth (Sphingicampa hubbardi)
  • Tricolor Buckmoth (Hemileuca tricolor),
  • Black Witch Moth (Ascalapha odorata),
  • Owlet Moths (family Noctuidae)
  • Mesquite Stinger Flannel Moth (Norape tenera),
  • Naval Orange Worm Moth (Amyelois transitella)
  • Merry Melipotis Moth (Melipotis jucunda)

Common names include catclaw acacia, catclaw mesquite, Gregg’s catclaw, paradise flower, wait-a-minute bush, and wait-a-bit tree; these names mostly come from the fact that the tree has numerous hooked prickles with the shape and size of a cat‘s claw which tend to hook onto passers-by; the hooked person must stop (“wait a minute”) to remove the prickles carefully to avoid injury or shredded clothing.

Wikipedia

Found on flats, washes, and slopes below 5,000 ft. in California, Arizona, Nevada, Utah, New Mexico, Texas, and south into Northern Mexico

Spadefoot Nursery

Other Resources:

Maricopa Pollinator Pathway Plant List

PollinatorWeb Recommended Plants

Mountain States Wholesale Nursery

The Desert Responds: Tadpoles and Hackberries

Last Saturday marked our first significant monsoon rainfall, measuring in at 1″, and neighboring parks allow us to observe how the desert has responded.

Four Days Later – Tadpoles in Temporary Ponds (Rain Pools)

Although the above species has yet to be determined, tadpoles can hatch from eggs in as little as 15 hours, and develop into toads in a week.

[Couch’s Spadefoot toads] Their eggs have been known to hatch in just 15 hours, and they can complete the transformation from “tadpole to hopper” in as little as a week — assuming the puddle they are deposited in lasts that long.

In addition to the all-important moisture, amphibians are drawn out this time of year by another monsoon mainstay: flying ants. After a storm, Rosen said, swarms of the insects will emerge, touching off a feeding frenzy by frogs and toads.

Tucson.com

A number of toads and frogs call the Sonoran Desert home, including:

Spiny Hackberry Flowers Are Hard to Find, but Just Listen for the Buzz
Spiny Hackberry (Celtis pallida) with Fruit

Inconspicuous yellow-green flowers April-October depending on rainfall. Berries ripen July-December.

The edible berries are sweet to man and birds. Hermit Thrush, Northern Cardinal, towhees, Phainopepla, Townsend’s Solitaire, Cedar Waxwing, thrashers, White-crowned Sparrow and House Finch are among the birds likely to be seen at Desert Hackberry when in fruit.

Two fascinating butterflies use this plant as a larval host. The Leilia Hackberry Butterfly (Asterocampa leilia), burnt orange with black marginal spots, will almost always be found patrolling nearby up and down a wash just a few feet above the ground stopping frequently to perch on the ground.

…Another butterfly that feeds on hackberry as a caterpillar is the Snout Butterfly (Libytheana bachmanii), also colored burnt orange. The adult butterflies have a long snout formed from elongated palps (mouthparts), and unlike the hackberry butterflies, are avid nectar feeders especially at Seep Baccharis.

Arizonensis

Worst Months for Plants in Phoenix

Although you may initially assume that the months with the hottest average temperature pose the biggest threat to plants, other factors also contribute to plant stress levels.

Let’s look at a table of average weather in Phoenix:

Temps of 100 plus are common June through September.

July and August pose additional challenges for plants, with average nighttime lows in the 80s. Plants that use CAM respiration can struggle and growth may stop, leading to root rot.

Monsoon officially starts in June, but Phoenix typically starts to benefit around mid-July.

So what factors affect plant stress during the hottest months?

  • Daytime high temperature
  • Nighttime low temperature
  • Humidity
  • Rainfall

June

Daytime temperatures break the century mark and may even soar into the 100+ degree zone. Low humidity, lots of sun and little rain make this an extremely challenging month, especially for non-desert adapted species. Cell damage can occur at about 115 degrees for broader leafed plants under these conditions. Applying extra water during June may not cure the stress because plants are not able to function at a level where they can overcome evapotranspiration.

In addition to low rainfall, deserts are characterized by a high rate of water loss from the ground (evaporation) and through plants (transpiration). Together this is called evapotranspiration. Potential evapotranspiration is the amount of water that would be lost through evaporation and transpiration if it were available.

What Is a Desert – DesertUSA

Protecting non-desert adapted plants with a 40% or 50% shade cloth will help, especially during the first year. Another helpful practice is to plant in fall instead of spring so there is more time for plants to get established.

July

The first couple of weeks can be similar to June, depending on when the Monsoon engine gets up and running. Rising humidity levels provide a break from the sun’s rays and allow plants to get a foothold against evapotranspiration.

Clear dry air transmits about 90% of available sunlight to the ground on a typical desert day compared to 40% in a typical humid climate.

What Is a Desert – DesertUSA

Cloudy days and rainfall also provide relief for stressed plants, resulting in new growth and flowering. Nighttime temperatures may be high enough to cause issues for CAM plants, resulting in root rot – this mostly affects non-Sonoran desert plants.

CAM is an adaptation for increased efficiency in the use of water, and so is typically found in plants growing in arid conditions. (CAM is found in over 99% of the known 1700 species of Cactaceae and in nearly all of the cactii producing edible fruits.)

Wikipedia

August

Monsoon continues through August. Average rainfall and nighttime lows are similar to July and average hours of sunshine fall by about 7%.

September

Monsoon officially ends September 30th, so humidity, clouds and rain may benefit plants throughout the month. If the days turn arid, though, high daytime temperatures can pose issues similar to June. Average daily temperatures are down a few degrees from June/July, hours of sunshine are down about 10% and rainfall averages begin to decline.

Best Months to Observe Butterflies in Phoenix

Butterflies are most active when it’s warm and when nectar sources are readily available. So what are the best months to observe butterflies in the Phoenix Sonoran Desert?

In Phoenix, Queens, Fiery Skippers and Gulf Fritillaries are usually around all summer. You can expect to see a showing of butterflies in the late winter into Spring, but the biggest show often comes in the months of August, September and October.

Western Pygmy Blue, Oct 25, 2021

The three popular months coincide with Phoenix Monsoon and quite a number of blooming nectar plants. Following are some observations from the 2021/2022 calendar years in Phoenix. Note that 2021 was an amazing banner year for butterflies!

Some October Observations

Large Orange Sulphur
Monarch
Painted Lady
Mexican Yellow
American Snout
Dainty Sulphur
Ceraunus Blue
Orange Sulphur
Western Pygmy Blue
Fiery Skipper
Cloudless Sulphur
Great Purple Hairstreak
Queen
Sleepy Orange
Funereal Duskywing
Echo Azure
Arizona Powdered Skipper
Cloudless Sulphur
Tiny Checkerspot (Pinal County)
California Patch
Empress Leilia
Violet-clouded Skipper
Fatal Metalmark
West Coast Lady
Queen
Eufala Skipper
Northern White Skipper

Some November Observations

Western Pygmy Blue
Reakirt’s Blue
Sleepy Orange
Mexican Yellow
American Lady
Checkered White
Orange Sulphur
Dainty Sulphur
Pipevine Swallowtail
Painted Lady
Common and White Checkered Skippers
Variegated Fritillary
Gray Hairstreak
Queen
American Lady
American Snout
Fiery Skipper
Gulf Fritillary
Gray Buckeye
Monarch
Red Admiral

Some December Observations

Painted Lady
Funereal Duskywing
Gulf Fritillary
Monarch
West Coast Lady
Queen
Gray Buckeye
Mexican Yellow
Dainty Sulphur
Ceraunus Blue

Some January Observations

Gulf Fritillary
Queen
Monarch
Reakirt’s Blue
Queen
American Snout
Painted Lady
West Coast Lady

Some February Observations

Mourning Cloak
American Snout
Gray Hairstreak
Sleepy Orange
Orange Sulphur

Some March Observations

Red Admiral
Western Giant Swallowtail
Funereal Duskywing
West Coast Lady
Great Purple Hairstreak

Some April Observations

Marine Blue
Gray Buckeye
Dainty Sulphur
Echo Azure
Sleepy Orange
Common Checkered Skipper
Juniper Hairstreak
American Snout
Painted Lady

Some May Observations

Cabbage White
Northern White Skipper
Echo Azure
Pipevine Swallowtail
California Patch

Some June Observations

Reakirt’s Blue
Marine Blue
Empress Leilia
Ceraunus Blue

Some July Observations

Fiery Skipper
Queen
Queen Caterpillar
Sleepy Orange
Gulf Fritillary

Bee Flies as Pollinators

Family Bombyliidae (Bee Flies): A pollinator with a bad reputation. They are among the many flies that imitate bees, bumble bees specifically. By hovering, instead of landing, they avoid many predators hiding in the flowers.

Adults generally feed on nectar and pollen, some being important pollinators. Larvae generally are parasitoids of other insects, including bees. The adult females usually deposit eggs in the vicinity of possible hosts, quite often in the burrows of beetles or wasps/solitary bees.

Bee flies also facilitate pollination of many species of flowering plants. While they do not land on the flower, they do carry some pollen from plant to plant. It is thought they are just as efficient pollinators of some types of flowers as are the bees and they are more frequent visitors so, in the end, they may a pollinate more flowers than bees.

Banded Bee Fly
Genus Geron
Genus Aphoebantus
Genus Lepidanthrax
Genus Paravilla
Poecilanthrax arethusa
Genus Villa
Genus Anastoechus
Bomber Fly
Genus Lordotus

Additional Resources:

How Many Butterfly Species Live in the Sonoran Desert?

The Sonoran Desert is bounded to the north by the Mogollon Rim, to the west by the southeastern corner of California and down into Baja California, and to the south by Sonora, Mexico.

Desert Museum Regional Natural History: Deserts in AZ, CA and Mexico

There are over 250 species of butterflies in the Sonoran Desert. This rich butterfly diversity is due in part to the varied topography in this desert, which supports a wide variety of microclimates and plant distributions.

A significant number of butterflies are influx species, meaning they enter the Sonoran Desert from other deserts, thorn scrub habitats and mountain ranges. The combination of indigenous and influx species account for the high number of species and make for great butterfly watching.

Butterflies play important roles in the ecosystem. Their larval and adult forms are an important part of the food web and many help pollinate plants. Since they experience comparable environmental pressures and are easy to observe, butterflies are excellent bioindicators of environmental health.

For more information, and butterfly photos:

About Native Bees in the Sonoran Desert – Stings and Nests

Most of the news goes to the Honey Bee, a non-native European import, but there are about 1,000 species of native bees in the Sonoran Desert bioregion. And unlike the general bee stereotype, most native bees are solitary and don’t produce honey.

Whereas honey bees build honeycomb hives and live in large colonies, native bees, with the exception of bumble bees, are solitary and nest in the ground or in cavities like abandoned beetle holes in stems or twigs.

Because most native bees are solitary, it’s up to the female bee to build and provision the nest, and if the female dies, that generation is lost. As a result, native bees do not have the luxury of putting themselves at risk, and don’t sting unless absolutely necessary.

Western Honey Bee (Apis mellifera) is the most common of the 7-12 species of honey bee worldwide. It was one of the first domesticated insects.

About Stings

Male bees don’t sting. Surprised? I was!

Stingers are actually modified ovipositors, which, once upon a time, were used by female bees to lay eggs, so only female bees can sting. (Male bees also don’t collect pollen, and this is one means of differentiating a male vs a female observation.)

Honey bees (female) are the only bees that die after stinging. Native female bees don’t leave their stinger behind, so they’re free to defend themselves multiple times if required.

Nesting Habits and Lending a Helping Hand in Your Garden

A bee nest contains anywhere from one to several dozen nest cells.

For bees that nest in the ground, a female bee digs the hole, typically in a sunny south or east patch of exposed earth. Providing patches in your garden that are away from traffic areas can provide nesting opportunities.

Native bees that don’t nest in the ground take advantage of pre-existing nest cavities, including hollowed out twigs, abandoned beetle burrows, tiny holes in bricks and even abandoned snail shells. There are many ways you can help make your garden a home, for example, by leaving snags (dead trees), not removing leaf litter until late spring, or providing nest cavities made of dead wood, dead stems or brush piles.

If you’re creating or modifying a pollinator garden in the low desert areas of Maricopa County and adjacent areas and want to help support native bees, a great set of guidelines and resources are provided by the Maricopa Pollinator Pathway project. Consider joining the project by adding your garden, it’s free! The Maricopa Pollinator Pathway Comprehensive Habitat FAQ is a great way to learn more about what makes a great pollinator habitat.

The Xerces Society also has great information about how to support ground nesting bees, cavity nesting bees and bumble bees.

Another great resource is The Bees in Your Backyard, by Joseph S. Wilson & Olivia Messinger Carril.